astronomy, physics, science, Space, thought experiment

If the Sun went Supernova

I have to preface this article by saying that yes, I know I’m hardly the first person to consider this question.

I also have to add that, according to current physics (as of this writing in December 2017), the Sun won’t ever go supernova. It’s not massive enough to produce supernova conditions. But hey, I’ll gladly take any excuse to talk about supernovae, because supernovae are the kind of brain-bending, scary-as-hell, can’t-wrap-your-feeble-meat-computer-around-it events that make astronomy so creepy and amazing.

So, for the purposes of this thought experiment, let’s say that, at time T + 0.000 seconds, all the ingredients of a core-collapse supernova magically appear at the center of the Sun. What would that look like, from our point of view here on Earth? Well, that’s what I’m here to find out!

From T + 0.000 seconds to 499.000 seconds

This is the boring period where nothing happens. Well, actually, this is the nice period where life on Earth can continue to exist, but astrophysically, that’s pretty boring. Here’s what the Sun looks like during this period:

Normal Sun.png

Pretty much normal. Then, around 8 minutes and 19 seconds (499 seconds) after the supernova, the Earth is hit by a blast of radiation unlike anything ever witnessed by humans.

Neutrinos are very weird, troublesome particles. As of this writing, their precise mass isn’t known, but it’s believed that they do have mass. And that mass is tiny. To get an idea of just how tiny: a bacterium is about 45 million times less massive than a grain of salt. A bacterium is 783 billion times as massive as a proton. Protons are pretty tiny, ghostly particles. Electrons are even ghostlier: 1836 times less massive than a proton. (In a five-gallon / 19 liter bucket of water, the total mass of all the electrons is about the mass of a smallish sugar cube; smaller than an average low-value coin.)

As of this writing (December 2017, once again), the upper bound on the mass of a neutrino is 4.26 million times smaller than the mass of an electron. On top of that, they have no electric charge, so the only way they can interact with ordinary matter is by the mysterious weak nuclear force. They interact so weakly that (very approximately), out of all the neutrinos that pass through the widest part of the Earth, only one in 6.393 billion will collide with an atom.

But, as XKCD eloquently pointed out, supernovae are so enormous and produce so many neutrinos that their ghostliness is canceled out. According to XKCD’s math, 8 minutes after the Sun went supernova, every living creature on Earth would absorb something like 21 Sieverts of neutrino radiation. Radiation doses that high have a 100% mortality rate. You know in Hollywood how they talk about the “walking ghost” phase of radiation poisoning? Where you get sick for a day or two, and then you’re apparently fine until the effects of the radiation catch up with you and you die horribly? At 21 Sieverts, that doesn’t happen. You get very sick within seconds, and you get increasingly sick for the next one to ten days or so, and then you die horribly. You suffer from severe vomiting, diarrhea, fatigue, confusion, fluid loss, fever, cardiac complications, neurological complications, and worsening infections as your immune system dies. (If you’re brave and have a strong stomach, you can read about what 15-20 Sieverts/Gray did to a poor fellow who was involved in a radiation accident in Japan. It’s NSFW. It’s pretty grisly.)

But the point is that we’d all die when the neutrinos hit. I’m no religious scholar, but I think it’d be appropriate to call the scene Biblical. It’d be no less scary than the scary-ass shit that happens in in Revelation 16. (In the King James Bible, angels pour out vials of death that poison the water, the earth, and the Sun, and people either drop dead or start swearing and screaming.) In our supernova Armageddon, the air flares an eerie electric blue from Cherenkov radiation, like this…

685px-Advanced_Test_Reactor

(Source.)

…and a few seconds later, every creature with a central nervous system starts convulsing. Every human being on the planet starts explosively evacuating out both ends. If you had a Jupiter-sized bunker made of lead, you’d die just as fast as someone on the surface. In the realm of materials humans can actually make, there’s no such thing as neutrino shielding.

But let’s pretend we can ignore the neutrinos. We can’t. They contain 99% of a supernova’s energy output (which is why they can kill planets despite barely interacting with matter). But let’s pretend we can, because otherwise, the only spectators will be red, swollen, feverish, and vomiting, and frankly, I don’t need any new nightmares.

T + 499.000 seconds to 568.570 seconds (8m13s to 9m28.570s)

If we could ignore the neutrino radiation (we really, really can’t), this would be another quiet period. That’s kinda weird, considering how much energy was just released. A typical supernova releases somewhere in the neighborhood of 1 × 10^44 Joules, give or take an order of magnitude. The task of conveying just how much energy that is might be beyond my skills, so I’m just going to throw a bunch of metaphors at you in a panic.

According to the infamous equation E = m c^2, 10^44 Joules would mass 190 times as much as Earth. The energy alone would have half the mass of Jupiter. 10^44 Joules is (roughly) ten times as much energy as the Sun will radiate in its remaining 5 billion years. If you represented the yield of the Tsar Bomba, the largest nuclear device ever set off, by the diameter of a human hair, then the dinosaur-killing (probably) Chicxulub impact would stretch halfway across a football field, Earth’s gravitational binding energy (which is more or less the energy needed to blow up the planet) would reach a third of the way to the Sun, and the energy of a supernova would reach well past the Andromeda galaxy. 1 Joule is about as much energy as it takes to pick up an egg, a golf ball, a small apple, or a tennis ball (assuming “pick up” means “raise to 150 cm against Earth gravity.”) A supernova releases 10^44 of those Joules. If you gathered together 10^44 water molecules, they’d form a cube 90 kilometers on an edge. It would reach almost to the edge of space. (And it would very rapidly stop being a cube and start being an apocalyptic flood.)

Screw it. I think XKCD put it best: however big you think a supernova is, it’s bigger than that. Probably by a factor of at least a million.

And yet, ignoring neutrino radiation (we still can’t do that), we wouldn’t know anything about the supernova until nine and a half minutes after it happened. Most of that is because it takes light almost eight and a quarter minutes to travel from Sun to Earth. But ionized gas is also remarkably opaque to radiation, so when a star goes supernova, the shockwave that carries the non-neutrino part of its energy to the surface only travels at about 10,000 kilometers per second. That’s slow by astronomical standards, but not by human ones. To get an idea of how fast 10,000 kilometers per second is, let’s run a marathon.

At the same moment, the following things leave the start line: Usain Bolt at full sprint (10 m/s), me in my car (magically accelerating from 0 MPH to 100 MPH in zero seconds), a rifle bullet traveling at 1 kilometer per second (a .50-caliber BMG, if you want to be specific), the New Horizons probe traveling at 14 km/s (about as fast as it was going when it passed Pluto), and a supernova shockwave traveling at 10,000 km/s.

Naturally enough, the shockwave wins. It finishes the marathon (which is roughly 42.195 kilometers) in 4.220 milliseconds. In that time, New Horizons makes it 60 meters. The bullet has traveled just under 14 feet (422 cm). My car and I have traveled just over six inches (19 cm). Poor Usain Bolt probably isn’t feeling as speedy as he used to, since he’s only traveled an inch and a half (4.22 cm). That’s okay, though: he’d probably die of exhaustion if he ran a full marathon at maximum sprint. And besides, he’s about to be killed by a supernova anyway.

T + 569 seconds

If you’re at a safe distance from a supernova (which is the preferred location), the neutrinos won’t kill you. If you don’t have a neutrino detector, when a supernova goes off, the first detectable sign is the shock breakout: when the shockwave reaches the star’s surface. Normally, it takes in the neighborhood of 20 hours before the shock reaches the surface of its parent star. That’s because supernovas (at least the core-collapse type we’re talking about) usually happen inside enormous, bloated supergiants. If you put a red supergiant where the Sun is, then Jupiter would be hovering just above its surface. They’re that big.

The Sun is much smaller, and so it only takes a couple minutes for the shock to reach the surface. And when it does, Hell breaks loose. There’s a horrific wave of radiation trapped behind the opaque shock. When it breaks out, it heats it to somewhere between 100,000 and 1,000,000 Kelvin. Let’s split the difference and say 500,000 Kelvin. A star’s luminosity is determined by two things: its temperature and its surface area. At the moment of shock breakout, the Sun has yet to actually start expanding, so its surface area remains the same. Its temperature, though, increases by a factor of almost 100. Brightness scales in proportion to the fourth power of temperature, so when the shock breaks out, the Sun is going to shine something like 56 million times brighter. Shock breakout looks something like this:

Sun Shock Breakout.png

But pretty soon, it looks like this:

Sun Supernova.blend

Unsurprisingly, this ends very badly for everybody on the day side. Pre-supernova, the Earth receives about 1,300 watts per square meter. Post-supernova, that jumps up to 767 million watts per square meter. To give you some perspective: that’s roughly 700 times more light than you’d be getting if you were currently being hit in the face by a one-megaton nuclear fireball. Once again: However big you think a supernova is, it’s bigger than that.

All the solids, liquids, and gases on the day side very rapidly start turning into plasma and shock waves. But things go no better for people on the night side. Let’s say the atmosphere scatters or absorbs 10% of light after passing through its 100 km depth. That means that, after passing through one atmosphere-depth, 90% of the light remains. Since the distance, across the Earth’s surface, to the point opposite the sun is about 200 atmosphere-depths, that gives us an easy equation for the light on the night side: [light on the day side] * (0.9)^200. (10% is approximate. After searching for over an hour, I couldn’t find out exactly how much light the air scatters, and although there are equations for it, I was getting a headache. Rayleigh scattering is the relevant phenomenon, if you’re looking for the equations to do the math yourself).

On the night side, even after all that atmospheric scattering, you’re still going to burn to death. You’ll burn to death even faster if the moon’s up that night, but even if it’s not, enough light will reach you through the atmosphere alone that you’ll burn either way. If you’re only getting light via Rayleigh scattering, you’re going to get something like 540,000 watts per square meter. That’s enough to set absolutely everything on fire. It’s enough to heat everything around you to blowtorch temperatures. According to this jolly document, that’s enough radiant flux to give you a second-degree burn in a tenth of a second.

T + 5 minutes to 20 minutes

We live in a pretty cool time, space-wise. We know what the surfaces of Pluto, Vesta, and Ceres look like. We’ve landed a probe on a comet. Those glorious lunatics at SpaceX just landed a booster that had already been launched, landed, and refurbished once. And we’ve caught supernovae in the act of erupting from their parent stars. Here’s a graph, for proof:

breakout_sim-ws_v6.png

(Source. Funnily enough, the data comes from the awesome Kepler planet-hunting telescope.)

The shock-breakout flash doesn’t last very long. That’s because radiant flux scales with the fourth power of temperature, so if something gets ten times hotter, it’s going to radiate ten thousand times as fast, which means, in a vacuum, it’s going to cool ten thousand times faster (without an energy source). So, that first bright pulse is probably going to last less than an hour. But during that hour, the Earth’s going to absorb somewhere in the neighborhood of 3×10^28 Joules of energy, which is enough to accelerate a mass of 4.959×10^20 kg. to escape velocity. In other words: that sixty-minute flash is going to blow off the atmosphere and peel off the first 300 meters of the Earth’s crust. Still better than a grisly death by neutrino poisoning.

T + 20 minutes to 4 hours

This is another period during which things get better for a little while. Except for the fact that pretty much everything on the Earth’s surface is either red-hot or is now part of Earth’s incandescent comet’s-tail atmosphere, which contains, the plants, the animals, most of the surface, and you and me. “Better” is relative.

It doesn’t take long for the shock-heated sun to cool down. The physics behind this is complicated, and I don’t entirely understand it, if I’m honest. But after it cools, we’re faced with a brand-new problem: the entire mass of the sun is now expanding at between 5,000 and 10,000 kilometers per second. And its temperature only cools to something like 6,000 Kelvin. So now, the sun is growing larger and larger and larger, and it’s not getting any cooler. We’re in deep dookie.

Assuming the exploding sun is expanding at 5,000 km/s, it only takes two and a quarter minutes to double in size. If it’s fallen back to its pre-supernova temperature (which, according to my research, is roughly accurate), that means it’s now four times brighter. Or, if you like, it’s as though Earth were twice as close. Earth is experiencing the same kind of irradiance that Mercury once saw. (Mercury is thoroughly vaporized by now.)

In 6 minutes, the Sun has expanded to four times its original size. It’s now 16 times brighter. Earth is receiving 21.8 kilowatts per square meter, which is enough to set wood on fire. Except that there’s no such thing as wood anymore, because all of it just evaporated in the shock-breakout flash.

At sixteen and a quarter minutes, the sun has grown so large that, even if you ignored the earlier disasters, the Earth’s surface is hot enough to melt aluminum.

The sun swells and swells in the sky. Creepy mushroom-shaped plumes of radioactive nickel plasma erupt from the surface. The Earth’s crust, already baked to blackened glass, glows red, then orange, then yellow. The scorched rocks melt and drip downslope like candle wax. And then, at four hours, the blast wave hits. If you thought things couldn’t get any worse, you haven’t been paying attention.

T + 4 hours

At four hours, the rapidly-expanding Sun hits the Earth. After so much expansion, its density has decreased by a factor of a thousand, or thereabouts. Its density corresponds to about the mass of a grain of sand spread over a cubic meter. By comparison, a cubic meter of sea-level air contains about one and a quarter kilograms.

But that whisper of hydrogen and heavy elements is traveling at 5,000 kilometers per second, and so the pressure it exerts on the Earth is shocking: 257,000 PSI, which is five times the pressure it takes to make a jet of abrasive-laden water cut through pretty much anything (there’s a YouTube channel for that). The Earth’s surface is blasted by winds at Mach 600 (and that’s relative to the speed of sound in hot, thin hydrogen; relative to the speed of sound in ordinary air, it’s Mach 14,700). One-meter boulders are accelerated as fast as a bullet in the barrel of a gun (according to the formulae, at least; what probably happens is that they shatter into tiny shrapnel like they’ve been hit by a gigantic sledgehammer). Whole hills are blown off the surface. The Earth turns into a splintering comet. The hydrogen atoms penetrate a full micron into the surface and heat the rock well past its boiling point. The kinetic energy of all that fast-moving gas delivers 10^30 watts, which is enough to sand-blast the Earth to nothing in about three minutes, give or take.

T + 4 hours to 13h51m

And the supernova has one last really mean trick up its sleeve. If a portion of the Earth survives the blast (I’m not optimistic), then suddenly, that fragment’s going to find itself surrounded on all sides by hot supernova plasma. That’s bad news. There’s worse news, though: that plasma is shockingly radioactive. It’s absolutely loaded with nickel-56, which is produced in huge quantities in supernovae (we’re talking up to 5% of the Sun’s mass, for core-collapse supernovae). Nickel-56 is unstable. It decays first to radioactive cobalt-56 and then to stable iron-56. The radioactivity alone is enough to keep the supernova glowing well over a million times as bright as the sun for six months, and over a thousand times as bright as the sun for over two years.

A radiation dose of 50 Gray will kill a human being. The mortality rate is 100% with top-grade medical care. The body just disintegrates. The bone marrow, which produces the cells we need to clot our blood and fight infections, turns to blood soup. 50 Gray is equivalent to the deposition of 50 joules of radiation energy per kilogram. That’s enough to raise the temperature of a kilo of flesh by 0.01 Kelvin, which you’d need an expensive thermometer to measure. Meanwhile, everything caught in the supernova fallout is absorbing enough radiation to heat it to its melting point, to its boiling point, and then to ionize it to plasma. A supernova remnant is insanely hostile to ordinary matter, and doubly so to biology. If the Earth hadn’t been vaporized by the blast-wave, it would be vaporized by the gamma rays.

And that’s the end of the line. There’s a reason astronomers were so shocked to discover planets orbiting pulsars: pulsars are born in supernovae, and how the hell can a planet survive one of those?

Standard
biology, science, silly, thought experiment

Life at 1:1000 Scale, Part 1

You can’t see it, but out in the real world, I look like a Scottish pub brawler. I’ve got the reddish beard and the roundish Scots-Irish face and the broad shoulders and the heavy build I inherited from my Scotch and Irish ancestors (the hairy arms come from my Italian ancestors).

What I’m saying is that I’m a bulky guy. I stand 6 feet, 3 inches tall. That’s 190.5 centimeters, or 1,905 millimeters. Keep that figure in mind.

When I was a kid, the motif of someone getting shrunk down to minuscule size was popular. It was the focus of a couple of books I read. There was that one episode of The Magic Schoolbus which was pretty much just The Fantastic Voyage in cartoon form. There was the insufferable cartoon of my late childhood, George Shrinks.

As a kid, I was very easily bored. When I got bored waiting in line for the bathroom, for instance, I would imagine what it would actually be like to be incredibly tiny. I imagined myself nestled among a forest of weird looping trees: the fibers in the weird multicolored-but-still-gray synthetic carpet my school had. I imagined what it would be like to stand right beneath my own shoe, shrunk down so small I could see atoms. I realized that the shoe would look nothing like a shoe. It would just be this vast plain of differently-colored spheres (that was how I envisioned atoms back then, because that’s how they looked in our science books).

Now, once again, I find myself wanting to re-do a childhood thought experiment. What if I were shrunk down to 1/1000th of my actual size? I’d be 1.905 millimeters tall (1,905 microns): about the size of those really tiny black ants with the big antennae that find their way into absolutely everything. About the size of a peppercorn.

Speaking of peppercorns, let’s start this bizarre odyssey in the kitchen. I measured the height of my kitchen counter as exactly three feet. But because I’m a thousand times smaller, the counter is a thousand times higher. In other words: two-thirds the height of the intimidating Mount Thor:

mount_thor

(Source.)

I remember this counter as being a lot smoother than it actually is. I mean, it always had that fine-textured grainy pattern, but now, those textural bumps, too small to measure when I was full-sized, are proper divots and hillocks.

I don’t care how small I am, though: I intend to have my coffee. Anybody who knows me personally will not be surprised by this. It’s going to be a bit trickier now, since the cup is effectively a mile away from the sugar and the jar of coffee crystals, but you’d better believe I’m determined when it comes to coffee.

Though, to be honest, I am a little worried about my safety during that crossing. There’s a lot more wildlife on this counter than I remember. There’s a sparse scattering of ordinary bacteria, but I don’t mind them: they’re no bigger than ants even at this scale, so I don’t have to confront their waxy, translucent grossness. There is what appears to be a piece of waxy brown drainage pipe lying in my path, though. It’s a nasty-looking thing with creepy lizard-skin scales up and down it. I think it’s one of my hairs.

I’m more concerned about the platter-sized waxy slab lying on the counter next to the hair. There are two reasons for this: First, I’m pretty sure the slab is a flake of sloughed human skin. Second, and most important, that slab is being gnawed on by a chihahua-sized, foot-long monstrosity:

8f87b071ca15a175804fa780020feade

I know it’s just a dust mite, but let me tell you, when you see those mandibles up close, and those mandibles are suddenly large enough to snip off a toe, they suddenly get a lot more intimidating. This one seems friendly enough, though. I petted it. I think I’m gonna call it Liam.

My odyssey to the coffee cup continues. It’s a mile away, at my current scale, but I know from experience I can walk that far in 20 minutes. But the coffee cup is sitting on a dishcloth, drying after I last rinsed it out, and that dishcloth is the unexpected hurdle that shows up in all the good adventure books.

The rumpled plateau that confronts me is 10 meters high (32 feet, as tall as a small house or a tree), and its surface looks like this:

cover-12-3_1

(Source.)

Those creepy frayed cables are woven from what looks like translucent silicone tubing. Each cable is about as wide as an adult man. If I’d known I was going to be exposed to this kind of weird-textured information overload, I never would’ve shrunk myself down. But I need my coffee, and I will have my coffee, so I’m pressing forward.

But, you know, now that I’m standing right next to the coffee cup, I’m starting to think I might have been a little over-ambitious. Because my coffee cup is a gigantic ceramic monolith. It’s just about a hundred meters high (333 feet): as tall as a football field (either kind) is long–as big as a 19-story office building. I know insects my size can lift some ridiculous fraction of their body weight, but I think this might be a bit beyond me.

All’s not lost, though! After another twenty-minute trek, I arrive back at the sugar bowl and the jar of coffee. Bit of a snag, though. It seems some idiot let a grain of sugar fall onto the counter (that grain is now the size of a nightstand, and is actually kinda pretty: like a huge crystal of brownish rock salt), which has attracted a small horde of HORRIFYING MONSTERS:

pharoh-ant4-x532-new

(Source.)

That is a pharaoh ant. Or, as we here in the Dirty South call them, “Oh goddammit! Not again!” In my ordinary life, I knew these as the tiny ants that managed to slip into containers I thought tightly closed, and which were just about impossible to get rid of, because it seemed like a small colony could thrive on a micron-thin skid of ketchup I’d missed when last Windexing the counter.

Trouble is that, now, they’re as long as I am tall, and they’re about half my height at the shoulder. And they’ve got mandibles that could clip right through my wrist…

Okay, once again, I shouldn’t have panicked. Turns out they’re actually not that hostile. Plus, if you climb on one’s back and tug at its antennae for steering, you can ride it like a horrifying (and very prickly-against-the-buttock-region) pony!

I’m naming my new steed Cactus, because those little hairs on her back are, at this scale, icepick-sized thorns of death. I’m glad Cactus is just a worker, because if she was a male or a queen, I’m pretty sure she would have tried to mate with me, and frankly, I don’t like my chances of coming out of that intact and sane. Workers, though, are sterile, and Cactus seems a lot more interested in cleaning herself than mounting me, for which my gratitude is boundless.

I’ve ridden her to my coffee spoon, because I’m thinking I can make myself a nice bowl of coffee in the spoon’s bowl.

I’ve clearly miscalculated, and quite horribly, too: the bowl of this spoon is the size of an Olympic swimming pool: 50 meters (160 feet) from end to end. Plus, now that I’m seeing it from this close, I’m realizing that I haven’t been doing a very good job of cleaning off my coffee spoon between uses. It’s crusted with a patchy skin of gunk, and that gunk is absolutely infested with little poppy-seed-sized spheres and sausages and furry sausages, all of which are squirming and writing a little too much like maggots for my taste. I’m pretty sure they’re just bacteria, but I’m not going to knowingly go out and touch germs. Especially not when they’re just about the right size to hitch a ride on my clothes and covertly crawl into an orifice when I’m sleeping.

You know what? If I can’t have my coffee, I think this whole adventure was probably a mistake. I think I’m going to return to my ordinary body. Conveniently (in more ways than one), I’ve left my real body comatose and staring mindlessly at the cabinets above the counter. He’s a big beast: a mile high, from my perspective. An actual man-mountain. I’ll spare you the details of climbing him, because he wears shorts and I spent far too long climbing through tree-trunk-sized leg hairs with creepy-crawly skin microflora dangerously close to my face.

Now, though, I’m back in my brain and back at my normal size. And now that my weird little dissociative fugue is over, I can tell you guys to look out for part two, when I’ll tell you all the reasons there’s no way to actually shrink yourself down like that and live to tell about it.

Standard
physics, Space, thought experiment

Hypothetical Nightmares | Black Holes, Part 3

Imagine taking all the mass in the Milky Way (estimated to be around a trillion solar masses) and collapsing it into a black hole. The result wouldn’t be an ordinary black hole. Not even to astrophysicists, for whom all sorts of weird shit is ordinary.

The largest black hole candidate is the black hole at the center of the quasar S5 0014+813, estimated at 40 billion solar masses. In other words, almost a hundred times smaller than our hypothetical hole. As I said last time, as far as astronomical objects go, black holes are a fairly comfortable size. Even the largest don’t get much bigger than a really large star. Here, though, is how big our trillion-sun black hole would be, if we replaced the sun with it:

Galaxy Mass Black Hole.png

(Rendered in Universe Sandbox 2.)

The thing circled in orange is the black hole. When I started tinkering with the simulation, I was kinda hoping there’d be one or two dwarf planets outside the event horizon, so their orbits could at least offer a sense of scale. No such luck: the hole has a Schwarzschild radius of 0.312 light-years, which reaches well into the Oort cloud. That is, the galaxy-mass black hole’s event horizon alone would extend beyond the heliopause, and would therefore reach right into interstellar space. Proxima Centauri, around 4.2 light-years from Earth, is circled in white.

The immediate neighborhood around a black hole like this would be rough. We’re talking “feral children eating the corpse of a murder victim while two garbagemen fight to the death with hatchets over who gets to empty the cans on this street” kind of rough. That kinda neighborhood. No object closer than half a light-year would actually be able to orbit the hole: it would either have to fall into the hole or fly off to infinity.

That is, of course, if the hole isn’t spinning. As I said last time, you can orbit closer to a spinning hole. But I’m going to make a leap here and say that our galaxy-mass black hole isn’t likely to be spinning very fast. Some rough calculations suggest that, if it were rotating at half the maximum speed,the rotational kinetic energy alone would have several billion times the mass of the sun. I’m going to assume there’s not enough angular momentum in the galaxy to spin a hole up that much. I could be wrong. Let me know in the comments.

Spin or no spin, it’s gonna be a rough ride anywhere near the hole. Atoms orbiting at the innermost stable orbit (the photon sphere) are moving very close to the speed of light, and therefore, to them, the ambient starlight and cosmic microwave background ahead of them is blue-shifted and aberrated into a horrifying violet death-laser, while the universe behind is red-shifted into an icy-cold nothingness.

But, as we saw last time, once you get outside a large hole’s accretion disk, things settle down a lot. When it comes to gravity and tides, ultra-massive black holes like these are gentle giants. You could hover just outside the event horizon by accelerating upwards at 1.5 gees, which a healthy human could probably tolerate indefinitely, and which is very much achievable with ordinary rocket engines. The tides are no problem, even right up against the horizon. They’re measured in quadrillionths of a meter per second per meter.

Of course, if you’re hovering that close to a trillion-solar-mass black hole, you’re still going to die horribly. Let’s say your fuel depot is orbiting a light-year from the hole’s center, and they’re dropping you rocket fuel in the form of frozen blocks of hydrogen and oxygen. By the time they reach you, those blocks are traveling at a large fraction of the speed of light, and will therefore turn into horrifying thermonuclear bombs if you try to catch them.

But, assuming its accretion disk isn’t too big and angry, a hole this size could support a pretty pleasant galaxy. The supermassive black hole suspected to lie at the center of the Milky Way makes up at about 4.3 parts per million of the Milky Way’s mass. If the ratio were the same for our ultra-massive hole, then it could host around 200 quadrillion solar masses’ worth of stars, or, in more fun units, 80,000 Milky Ways. Actually, it might not be a galaxy at all: it might be a very tightly-packed supercluster of galaxies, all orbiting a gigantic black hole. A pretty little microcosm of the universe at large. Kinda. All enclosed within something like one or two million light-years. A weird region of space where intergalactic travel might be feasible with fairly ordinary antimatter rockets.

You’ll notice that I’ve skipped an important question: Are there any trillion-solar-mass black holes in the universe? Well, none that we know of. But unlike some of the other experiments to come in this article, black holes this size aren’t outside the realm of possibility.

I frequently reference a morbid little cosmology paper titled A Dying Universe. If you’re as warped as I am, you’ll probably enjoy it. It’s a good read, extrapolating, based on current physics, what the universe will be like up to 10^100 years in the future (which they call cosmological decade 100). If you couldn’t guess by the title, the news isn’t good. A hundred trillion years from now (Cosmological Decade 14), so much of the star-forming stuff in galaxies will either be trapped as stellar corpses or will have evaporated into intergalactic space that new stars will stop forming. The galaxies will go dark, and the only stars that shine will be those formed by collisions between high-mass brown dwarfs. By CD 30 (a million trillion trillion years from now), gravitational encounters between stars in the galaxy will have given all the stars either enough of a forward kick to escape altogether, or enough of a backward kick that they fall into a tight orbit around the central black hole. Eventually, gravitational radiation will draw them inexorably into the black hole. By CD 30, the local supercluster of galaxies will consist of a few hundred thousand black holes of around ten billion solar masses, along with a bunch of escaping rogue stars. By this time, the only source of light will be very occasional supernovae resulting from the collisions of things like neutron stars and white dwarfs. Eventually, the local supercluster will probably do what the galaxy did: the lower-mass black holes will get kicked out by the slingshot effect, and the higher-mass ones will coalesce into a super-hole that might grow as large as a few trillion solar masses. Shame that everything in the universe is pretty much dead, so no cool super-galaxies can form. But the long and the short of it is that such a hole isn’t outside the realm of possibility, although you and I will never see one.

The Opposite Extreme

But what about really tiny black holes? In the first post in this series, I talked about falling into a black hole with the mass of the Moon. But what about even smaller holes?

Hobo Sullivan is a Little Black Pinhole

Yeah, I feel like that sometimes. I mass about 131 kilograms (unfortunately; I’m working on that). If, by some bizarre accident (I’m guessing the intervention of one of those smart-ass genies who twist your wishes around and ruin your shit), I was turned into a black hole, I’d be a pinprick in space far, far smaller than a proton. And then, within a tenth of a nanosecond, I would evaporate by Hawking radiation (if it exists; we’re still not 100% sure). When a black hole is this small, Hawking radiation is nasty shit. It would have a temperature of a hundred million trillion degrees, and I’d go off like four Tsar Bombas, releasing over 200 megatons of high-energy radiation. Not enough to destroy the Earth, but enough to ruin the year for the inhabitants of a medium-sized country.

There’s no point in trying to work out things like surface tides or surface gravity: I’d be gone so fast that, in the time between my becoming a black hole and my evaporation, a beam of light would have traveled a foot or two. Everything around me is as good as stationary for my brief lifetime.

A Burial Fit for a Pharaoh. Well, for a weird pharaoh.

Things change dramatically once black holes get a little bigger. A hole with the mass of the Great Pyramid of Giza (around 6 billion kilograms) would take half a million years to evaporate. It would still be screaming-hot: we’re talking trillions of Kelvin, which is hot enough that nearby matter will vaporize, turn to plasma, the protons and neutrons will evaporate out of nuclei, and then the protons and neutrons themselves will melt into a quark-gluon soup. But, assuming the black hole is held in place exactly where the pyramid once stood, we won’t see that. We’ll only see a ball of plasma and incandescent air the size of a university campus or a big football stadium, throbbing and booming and setting fire to everything for a hundred kilometers in every direction. The Hawking radiation wouldn’t inject quite enough energy to boil the planet, but it would probably be enough (combined with things like the fact that it’s setting most of Egypt on fire) to spoil the climate in the long run.

This isn’t an issue if the black hole is where black holes belong: the vacuum of space. Out there, the hole won’t gobble up Earth matter and keep growing until it destroys us. Instead, it’ll keep radiating brighter and brighter until it dies in a fantastic explosion, much like the me-mass black hole did.

Can’t you just buy a space heater like a normal person?

It’s starting to get cold here in North Carolina. Much as I love the cold, I’ve been forced to turn my heater on. But, you know, electric heating is kinda inefficient, and this house isn’t all that well insulated. I wonder if I could heat the house using Hawking radiation instead…

Technically, yes. Technically in the sense of “Yeah, technically the equations say yes.” Technically in the same way that you could technically eat 98,000 bacon double cheeseburgers at birth and then go on a 75-year fast, because technically, that averages out to 2,000 Calories per day. What I mean is that while the numbers say you can, isolated equations never take into account all the other factors that make this a really terrible idea.

A black hole with the mass of a very large asteroiod (like Ceres, Vesta, or Pallas) would produce Hawking radiation at a temperature of 500 Kelvin, which is probably too hot to cook with, but cool enough not to glow red-hot. That seems like a sensible heat source. Except for the fact that, as soon as you let it go, it’s going to fall through the floor, gobble up everything within a building-sized channel, and convert that everything into superheated plasma by frictional effects as it falls into the hole. And except for the fact that if you’re in the same neighborhood as the hole, you’ll simultaneously be pulled into it at great speed by its gravity, and pulled apart into a bloody mass of fettuccine by tidal forces. And except for the fact that, as the black hole orbits inside the Earth, it’s going to open up a kilometer-wide tunnel around it and superheat the rock, which will cause all sorts of cataclysmic seismic activity, and ultimately, the Earth will either collapse into the hole, or be blasted apart by the luminosity of the forming accretion disk, or some combination thereof.

Back to the Original Extreme

But there’s one more frontier we haven’t explored. (I was watching Star Trek yesterday.) That is: the biggest black hole we can reasonably (well, semi-reasonably) imagine existing. That’s a black hole with a mass of around 1 x 10^52 kilograms: a black hole with the mass of the observable universe. Minus the mass of the Earth and the Sun, which make less of a dent in that number than stealing a penny makes a dent in Warren Buffett’s bank account.

The hole has a Schwarzschild radius of about 1.6 billion light-years, which is a good fraction of the radius of the observable universe. Not that the observable universe matters much anymore: all the stuff that was out there is stuck in a black hole now.

For the Earth and Sun, though, things don’t change very much (assuming you set them at a modest distance from the hole). After all, even light needs over 10 billion years to circumnavigate a hole this size. Sure, the Earth and Sun will be orbiting the hole, rather than the former orbiting the latter, but since we’re dealing with gravitational accelerations less than 3 nanometers per second per second, and tides you probably couldn’t physically measure (4e-34 m/s/m at the horizon, and less further out, which falls into the realm of the Planck scale), life on Earth would probably proceed more or less as normal. The hole can’t inflict any accretion-disk horror on the Sun and Earth: there’s nothing left to accrete. Here on Earth, we’d just be floating for all eternity, living our lives, but with a very black night sky. If we ever bothered to invent radio astronomy, we’d probably realize there was a gigantic something in the sky, since plasma from the Sun would escape and fall into a stream orbiting around the hole, but we’d never see it. What a weird world that would be…

Then again, if the world’s not weird by the end of one of my articles, then I’m really not doing my job…

Standard
physics, thought experiment

Spin to Win | Black Holes, Part 2

In the previous part of this series, I tried to analyze what it would be like to fly an Apollo Command Module into black holes of various sizes. This time, though, I’m going to restrict myself to a single 1-million-solar-mass black hole. The difference is that, this time, I’m going to let the black hole spin (at 98% of the maximum possible spin, which is pretty average for a fast-spinning hole). But I’m getting ahead of myself. Before I go on, here’s my vehicle:

Apollo 11.jpg

(From the website of the Smithsonian Air and Space Museum)

That’s the actual command module Michael Collins, Buzz Aldrin, and Neil Armstrong took to the Moon (minus the Plexiglas shroud, of course). It would fit in even a medium-sized living room. This time, the crew will consist of me, Jürgen Prochnow (Das Boot Jürgen, naturally. Captain’s hat and all), and Charlize Theron. I was gonna take David Bowie and Abe Lincoln along again, but frankly, I’ve put Bowie through enough, and Lincoln was just so damn grim all the time.

Anyway, back to the subject at hand: the scary monster that is a rapidly-spinning black hole. All the black holes I discussed in the last part were Schwarzschild black holes, meaning they had no spin or electric charge. This black hole, though, is a Kerr black hole: it spins. The spin means this trip is a whole new ballgame. We’re still going to die horribly, of course, but hey, at least it’ll be interesting.

The first difference is that you can get closer to the event horizon of a spinning black hole. For a non-spinning black hole, there are no stable circular orbits closer than one and a half times the radius of the event horizon (the Schwarzschild radius), because in order to be in a circular orbit any closer, you’d have to travel faster than light. For spinning ones, there’s a lozenge-shaped region outside the event horizon called the ergosphere (My first-born daughter will be Ergosphere Sullivan). Objects near a rotating hole (or any rotating mass, to a lesser extent) are dragged along with the hole’s rotation. But inside the ergosphere, though, they’re being dragged along so fast that, no matter what, they can’t stand still. Inside the ergosphere, you have to rotate with the hole, because traveling anti-spinward would require going faster than the speed of light.

Here’s roughly what a free-fall trajectory into our Kerr black hole would look like (looking down at the hole’s north pole):

098-kerr-black-hole-infall

The ergosphere is the gray part. The event horizon is the black part.

Jürgen and Charlize are suspicious of me, but I gave them my word that we’re just orbiting the black hole. To make some observations. For science, and all that. When they’re not looking, I’m gonna hit the retro-rocket and plunge us to our deaths. I feel like there’s a flaw in my reasoning, but I don’t have time for such things.

Even orbits don’t work the way they normally do, near a spinning hole. Orbits around ordinary objects are very close to simple ellipses or circles. But, sitting in our command module, here’s what our orbit looks like (starting from parameters that should have given us a nice elliptical orbit):

Kerr BH Stable Orbit.png

This is because, when we orbit closer to the hole, we get a kick from the spin that twists our orbit around.

From nearby, a non-rotating black hole looks like its name: a black circle of nothingness, surrounded by a distorted background of stars and galaxies. From our orbit around the spinning million-solar-mass hole, though, the picture is much different:

Orbiting a Kerr Black Hole.jpg

(Picture and simulation by Alain Riazuelo.)

In that picture, the hole’s equator rotates from left to right. The reason the horizon is D-shaped is that photons coming from that direction were able to get a lot closer to the horizon, since they were moving in the direction of the rotation. On the opposite side, the horizon is bigger because those photons were going upstream, so to speak, and many of them were pulled to a halt by the spin and then either pulled into the hole, flung away, or pulled into a spinward orbit. Black holes are bullies. Spinning ones say “If you get too close, I’m going to eat you. And if you’re standing within a few arm’s lengths, you have to spin around me, or else I’ll eat you.”

(Incidentally, if you read about the movie’s background, the black hole in Interstellar was spinning at something like 99.999999% of the maximum rate. Its horizon would have been D-shaped like the picture above, from up close. From a distance, it would have looked…well, it would have looked like it did in the movie. They got it right, because they hired Kip motherfucking Thorne, Mr. Black Hole himself, to help write their ray-tracing code.

Speaking of Interstellar, the fact that you can get so much closer to a spinning black hole than a non-spinning one (providing you’re orbiting spinward) means you can get much deeper into its time-dilating gravity well. That means, as long as the tides aren’t strong enough to kill you, you can experience much bigger timewarps. The only way to get the same timewarp from a non-rotating black hole is to apply horrendously large forces to hover just outside the horizon. It’s much more practical to do in the vicinity of a spinning hole. Well, I mean, it’s no less practical than putting a Command Module in orbit around a black hole.

According to the equations from this Physics Stack Exchange discussion, as Jürgen, Charlize, and I zip around the hole close to the innermost stable orbit, time is flowing upwards of four times slower than it is for observers far away. I’m gonna keep us in orbit for a week, to lull my crewmates into complacency, so I’ll have the element of surprise when I try to kill us all. Well, we think it’s a week. Everyone outside thinks we’re orbit for a month and change

Then, without warning, I flip us around, turn on the engines, and take us into the hole. Jürgen fixes me with those steely blue eyes and that pants-shittingly intimidating face he was doing all through Das Boot. Charlize spends fifteen seconds trying to reason with me, then realizes I’m beyond all help and starts beating the shit out of me. Did you see Fury Road? She can punch. Neither of them can do anything to stop me, though: we’re already seconds from death.

But because this is a big black hole, the tides are gentle, at least outside the horizon. They’re stronger than the tides the Moon exerts on the Earth (which are measured in hundreds of nanometers per second per second), but they’re not what’s going to tear us to pieces.

What’s going to tear us to pieces is frame-dragging. Let’s go back to the metaphor of the whirlpool. The water moves much faster close to the center than it does far away. Because your boat is a physical object with a non-zero size, when you get really close, the water on one side of your boat is moving significantly faster than the water on the other side, because the near side is significantly closer than the far side. This blog hasn’t had any horrible pictures recently. Here’s one to explain the frame-dragging we experience:

Horrible Frame Dragging.png

In this picture, the capsule orbits bottom-to-top, and the hole rotates clockwise (this is the opposite of the view in the orbit plots; in this picture, we’re looking at the hole from the bottom, looking at its south pole; the reason has nothing to do with the fact that I screwed up and drew my horrible picture backwards).

Space closer to the hole is moving faster than space farther from the hole. The gradient transfers some of the hole’s angular momentum to the capsule, which is bad news, because that means the capsule starts spinning. It spins in the opposite direction of the hole (counter-clockwise, in the Horrible Picture (TM)).

I say the spin is bad news because, from the research for “Death by Centrifuge“, I know that things get really messy and horrible if you’re in a vehicle that rotates too fast.

Here’s a fun fact: Neil Armstrong came perilously close to death on his first spaceflight. During Gemini 8, while Armstrong and crewmate Dave Scott were practicing station-keeping and docking maneuvers with an uncrewed Agena target vehicle, the linked spacecraft started spinning. Unbeknownst to them, one of the Gemini capsule’s thrusters was stuck wide-open. Thinking it was the Agena causing the problem, they undocked. That’s when the shit really hit the fan, though I think Armstrong probably described it more gracefully. A video is worth a thousand words: here’s what it looked like when they undocked. Before long, the capsule was tumbling at 60 revolutions per minute (1 per second), wobbling around all three axes.

Did you ever spin in a circle when you were a kid? I did. Did you ever try it again as an adult, just to see what it was like? I did. I spent the next fifteen minutes lying in the grass (because I couldn’t tell which way was down) wondering if I should just go ahead and puke. Human beings don’t handle rotation well. According to this literature survey (thanks to Nyrath of Project Rho for helping direct me to it; it was hell to try and find a proper paper otherwise), average people do okay spinning at 1.7 RPM. At 2.2 RPM, susceptible people will probably start puking everywhere. At 5.44 RPM, ordinary tasks become stressful, because, thanks to the Coriolis effect (that troublemaking bastard), things like limbs, bodies, and inner-ear fluid don’t move normally, which plays hell with coordination. Also, it makes you puke. At 10 RPM, even the tough subjects in the study were seriously distressed.

Armstrong and Scott were spinning six times faster. When you spin, your brain loses the ability to compensate for movements of the eyes: you lose the ability to stabilize the image on your retinas, and the world wobbles and jumps. That’s bad news, especially if, for instance, you’re stuck inside a metal can which is spinning way too fast, and the only way you can stop it spinning way too fast (so that you don’t die) is by focusing your eyes on buttons and moving your Coriolis-afflicted hands to press them. Armstrong was an especially tough, calm dude, and he managed it, even though both men were starting to have serious vision problems. He did what any good troubleshooter would do: he switched the thrusters off and then on again (more or less). That saved the mission.

Now, I don’t know how fast the black hole will spin us, because the math is very complicated. But considering it’s a black hole we’re dealing with, probably pretty fast. Like I said, nothing about black holes is subtle. At 10 RPM, I throw up. My vomit describes a curved Coriolis-arc through the cabin and splatters on the wall. Jürgen doesn’t throw up until 20 RPM (after all, he’s a seafaring submarine captain). Charlize doesn’t throw up until 25,because she’s a badass.

At 60 RPM, I’m already screaming my head off, hyperventilating, and desperately regretting my decision to plunge us into a black hole. I try to hit buttons (pretty much at random), but I can’t get my fingers to go where I want them, and I press all the wrong ones. Jürgen is trying to calm me down and telling me he wants proper damage reports, but in my panic, I’ve forgotten all my German. Charlize has written both of us off and is trying to re-orient us and thrust away from the horizon, but it’s already too late.

At 60 RPM, the centrifugal acceleration on the periphery of the CM is already over 7 gees. There’s probably a bit of metal creaking, but nothing too serious. Because the crew couches are only a foot or so from the center of mass, we only experience an acceleration of 1.2 gees. For the moment, our main problem is that we’re punching and/or throwing up on each other.

At 120 RPM, the command module is starting to complain. Its extremities experience 28 gees. Panels slam shut. A cable pops loose and causes a short that trips the circuit breakers and kills our power. Even in our couches, we’re feeling almost 5 gees. I’m making a face like this:

gloc-face-735x413.jpg

(Source.)

At 200 RPM, the heat shield, experiencing 77 gees of centrifugal acceleration, cracks and flies off. It’s possible that the kick it gets from leaving our sorry asses behind, combined with the kick from being in the hole’s ergosphere (sounds dirty) is enough to slingshot the fragments to safety. Kind of a moot point, though, since I only care about the human parts, and all of those have blacked out at 13 gees.

Somewhere between 200 RPM and 500 RPM, the hull finally tears open. The bottom dome is flung off, letting important things like our air, our barf bags, and possibly our crew couches, fly out. Not that it matters: at 83 gees, we’ve all got ruptured aortas, brain hemorrhages, and we’re all in cardiac arrest.

At 1000 RPM (16.7 revolutions per second), the command module is flung decisively apart. Thanks to conservation of angular momentum, all the pieces are spinning pretty fast, too. Jürgen, Charlize, and I, are very dead, and in the goriest of possible ways: pulped by centrifugal force, and then shredded as we were spun apart.

The fragments closer to the horizon appear to accelerate ahead of us. The parts farther away fall behind. Most of the fragments fall into the hole. Spaghettification takes a while: once again, a more massive hole has weaker tides near the horizon.

As for what happens as we fall into the really nasty part of the hole (because it was sunshine and jellybeans before…), physics isn’t sure. The simplest models predict a ring-shaped singularity, rather than a point-shaped one. Some models predict that the ring singularity might act as an actual usable wormhole to another universe. But it’s also possible that effects I don’t pretend to understand (which have to do with weird inner horizons only rotating holes have) blue-shift the infalling light, creating a radiation bath that burns our atoms into subatomic ash. Either way, we’re not going to be visiting any worlds untold.

Once again, I’ve killed myself and two much cooler people. At least I only did it once this time. In the next and final part, I’m going to spend a little more time playing around with far less realistic black holes. (WARNING! Don’t actually play with black holes. If you have to ask why, then you skipped to the end of both articles.)

Standard
math, short, thought experiment

Short: Probabilities

For this thought experiment, let’s equate a probability of 1 (100% chance, a certainty) with the diameter of the observable universe. The diameter of the observable universe is about 93 billion light-years (because, during the 13.8 billion years since it started, the universe has been steadily expanding). With this analogy, let’s consider some probabilities!

According to the National Weather Service, your odds of being struck by lightning this year (if you live in the US, that is) are 1 in 1,042,000. Less than one in a million. One part in a million of the diameter of the universe is 93,000 light-years, which is far enough to take you outside the Milky Way, but on a cosmic scale, absolutely tiny.

The odds of winning the jackpot with a single ticket in the U.S. Powerball lottery are around 1 in 292 million. That’s like 318 light-years set against the diameter of the universe. 318 light-years is a long way. Even so, it’s an almost-reasonable distance. Most of the brighter stars you see in the night sky are closer than that. That’s almost the Sun’s neighborhood. Compared to the entire universe. Maybe that’s why they say the lottery is for suckers…

The odds of being struck by lightning three times in your lifetime are, mathematically, 1 in 1,000,000,000,000,000,000. The actual odds are even lower, since there’s a non-zero chance that you’ll be killed by a lightning strike, making getting another impossible. If your odds of dying in a lightning strike are 10%, then your odds of surviving are 9/10, and your odds of surviving the first two so you can get the third are (1 in a million) * (9/10) * (1 in a million) * (9 in 10) * (1 in a million), or about 81 in one hundred million trillion.That’s 81 in 100,000,000,000,000,000,000. That’s roughly the diameter of the Earth-moon system compared to the diameter of the universe.

The odds of putting 100 pennies in a cup, shaking them up, and scattering them so they all land flat, and then having every single coin come up heads, are 1 in 1, 267, 650, 600, 228, 229, 401, 496, 703, 205, 376. That’s the diameter of a grain of sand compared to the entire universe. Literally.

Get a standard deck of cards. Take out the jokers and the instructions. Shuffle the deck and pick a card at random. Do this 25 times. The odds of picking the jack of clubs every single time are like a proton compared to the visible universe.

If you pick 43 letters at random, the odds of forming the string

actisceneielsinoreaplatformbeforethecastlef

(that is, the first 43 letters of Hamlet) are as small as one Planck length (which is the smallest unit of distance that ever gets used in actual physics) compared to the visible universe. For reference, a Planck length is ten million trillion times smaller than a proton, which is itself a trillion times smaller than a grain of salt.

Incidentally, if you assembled random 43-letter strings, you would have to do it

32, 143, 980, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000

times to have a 99% chance of producing the first 43 letters of Hamlet in one of them. But a human bard did it in, at most, a couple hundred tries. Isn’t that weird? More probability stuff (and black hole stuff) to come!

Standard
physics, Space, thought experiment

Houston, We Have Several Problems: Black Holes, Part 1

There aren’t many movies that I loved as a kid and can still stand to watch as a grownup. I remember loving Beauty and the Beast, but I don’t know if I could watch it now, because I’ve developed an irrational hatred of musical numbers. I certainly couldn’t watch that amazingly cheesy monster truck movie where the guy who drove Snakebite drugged the guy who drove Bigfoot. Apollo 13, though, aged well. It’s high on the list of my favorite space movies. Thanks to that movie (and the much weirder, but still pretty damn good Marooned), this vehicle is comfortably familiar to me:

Apollo_CSM_lunar_orbit.jpg

(From Wikipedia.)

That there is the Apollo 15 command-service module. The command module (astronaut container) is the shiny cone at the front. Because I had cool parents, I got to go to the Johnson Space Center as a kid and see an actual command module, in person. As far as spacecraft go, it’s pretty small. If you stole one, you could hide it in your average garage. Now there‘s a good scene for a movie: some mad scientist with a stolen command module in his garage, tinkering with it while 80’s electronic montage music plays. Turning it into a time machine or something.

Once again, I imagine many of you are wondering what the hell I’m talking about. Don’t fret, there’s always (well, almost always) a method to my madness. Earlier today, I got thinking about the classic thought experiment: What would it be like to fall into a black hole. That thought experiment normally involves just dropping some hapless human (usually without even a spacesuit) right into one. You guys know me, though: if I’m going to do a weird thought experiment, I’m going to go into far more detail than necessary. That’s the fun part!

The point is, I’m going to start off my series on black holes by imagining what would happen if you dropped a pristine command module into black holes of various masses. The command module needs a three-person crew, and my crew will consist of myself, a young David Bowie, and Abraham Lincoln. Despite what you may think, no, I’m not on drugs. This is all natural, which, if you think about it, is much scarier.

A Mini Black Hole

As XKCD pointed out, a black hole with the mass of the Moon would not be a terribly dramatic-looking object. Even accounting for gravitational lensing, it would be next to impossible to see unless you were close to it, or you were looking really hard, or you had an X-ray/gamma-ray telescope. Nobody knows for sure whether black holes with masses this small actually exist. They might possibly have formed from the compression of the high-density plasma that filled the early universe, but so far, nobody’s spotted their telltale radiation.

But me, Bowie, and Lincoln are about to see one, and far too close.

At 1,700 kilometers, we’ve already gone from flying to falling. There’s nothing exciting happening, though, because as physicists always say, from a reasonable distance, a black hole’s gravitational field is no different from the gravitational field of a regular old object of the same mass. The tidal acceleration (which is the real killer when it comes to black holes) amounts to less than a millionth of a gee. Detectable, but only just.

At 100 kilometers, the tides are noticeable. Lincoln’s top-hat (which he foolishly left untethered. There wasn’t time to explain space flight and free-fall to a 19th-century politician) is slowly migrating to the end of the cabin. The tidal acceleration (the difference in pull between the center of the CM and either of its ends) is similar to the gravity of Pluto. The command module is stretching, but no more than, say, a 747 flexes in flight. Only detectable with fancy things like strain gauges.

At 10 km, we’re really motoring. Traveling at 31 kilometers per second, we’ve broken the record set by Apollo 10 for the fastest-moving humans. Bowie’s crazy Ziggy Stardust hair is getting misshapen by differential acceleration, which by now amounts to almost a full gee. Anything untethered (Lincoln’s hat, Bowie’s guitar, my cup of coffee, et cetera) is stuck at either end of the cabin.

At 5 km, we’re all shrieking in pain. The stray objects at the ends of the cabin are starting to get smashed. We’re all being stretched front-to-back (since that’s how you sit in a command module). The tides are pulling the command module like a rubber band, but a command module’s a compact and sturdy thing, so apart from some alarming creaking of metal, and maybe some cracking in the heat shield, it’s still in one piece.

All three of us die very quickly not long after the 2.5 km mark. Since the university still won’t let me use their finite-element physics package (well, more accurately, they won’t let me in the physics department…), I can only conjecture what will kill us, but it’ll either be the fact that the blood in our backs is being pulled toward the black hole much harder than the blood at our fronts (probably turning us very nasty colors and causing lots of horrible hemorrhages), or the fact that the command module has been stressed beyond its limits and sprung a leak. I’d wager the viewports would shatter before anything else happened, as their frames start to bend out of shape.

Time dilation hasn’t really kicked in, even by 500 meters, so an observer at a safe distance would see the CM crumple in real-time. The cone collapses like an umbrella being closed. Fragments of broken glass, shards of metal, control panels, shattered heat shield, and pieces of a legendary rocker, a melancholic President, and an idiot are spilling out of the wreckage.

By 10 meters, the command module is no longer falling straight down. It’s started falling inward, compressing side-to-side even as it stretches top-to-bottom. The individual components and fragments cast off from the wreck stretch and pull apart. Metal panels tear in two. Glass shards crack. Bits of flesh tear messily in half. The fragments divide and divide and divide. As they approach the event horizon, they explode into purple-white incandescent plasma: because the atoms are falling inward towards a point, they slam sideways into each other at high speeds. All 13,000 pounds of command module and crew either help bulk up the black hole, or form a radiant accretion disk denser than lead and smaller than a grape.

A 5-Solar-Mass Black Hole

In black hole thought experiments, the starting-point is usually a 1-solar-mass black hole. That makes sense: as far as astronomical objects go, the Sun is nicely familiar. But like I said before, scientists aren’t sure if there are any 1-solar-mass black holes anywhere in the Universe. As far as we know, all black holes in this mass range form from stars, and supernova leftovers smaller than something like 3 solar masses can still be supported by things like radiation pressure, degeneracy pressure, and the fact that atoms don’t like other atoms too close to them. In practice, there aren’t any known black hole candidates smaller than about 3 solar masses. There are a couple around 5 solar masses, and 5 is a nice round number, so that’s what I’m going with. We’re resetting this weird-ass experiment and dropping me, Bowie, and Lincoln into a stellar black hole.

At 380,000 kilometers (the distance from the Earth to the Moon), the tidal acceleration is detectable, but not noticeable. Good thing we’re free-falling (I should’ve made Tom Petty the third crewmember…), because if we were held stationary (say, by a magic platform hovering at a fixed altitude above the hole), we’d be flattened by a lethal 469-gee acceleration. Good thing, too, that we’re in an enclosed spacecraft: if the black hole has an accretion disk orbiting around it, we’re probably close enough that an unshielded human would be scalded to death by its heat, light, and X-rays. For our purposes, though, we’ll assume this black hole’s been floating through interstellar space for a long time, and has already cannibalized its own accretion disk, rendering it almost dark.

As we reach 10,000 km from the black hole, the same thing happens that happened with the mini black hole. David Bowie, who has gotten out of his seat to have a second tube of strawberry-banana pudding, finds it difficult to climb back to his couch against the gravity gradient. He’s being gently pelted by loose objects. Lincoln is just sitting in his couch looking very grave. I’m screaming my head off, so I miss all of this.

At 5,000 kilometers, the command module starts to creak. David Bowie is now stuck upside-down at the top of the cabin. I, having lost my shit and tried to open the hatch to end it quickly, have fallen to the bottom and broken my coccyx. Lincoln is still sitting in his couch looking very grave. We’re experiencing a total acceleration of over a million gees. If we tried to maintain a constant altitude, that million gees would turn us and the command module into a sheet of very thin and very gory foil. We’re moving almost as fast as the electrons shot from the electron gun of an old CRT TV.

Between 5,000 and 1,000 kilometers, the command module starts popping apart. It’s not as fast as the last time. First, the phenolic plastic of the heat shield cracks and pulls free of the insulation beneath. Then, the circular perimeter of the cone starts to crumple and wrinkle. (True story: the command module was built with crumple zones, just like a car, so that it didn’t pulp the astronauts too much when it hit the ocean at splashdown.) Not long after, the pressure hull finally ruptures, spewing white jets of gas and condensation in all directions like a leaky balloon. Then, the bottom of the pressure hull bursts. Think of a sledgehammer hitting a sheet of aluminum foil. All the guts of the command module spill out: wires, seats, guitars, apples (I was hungry), tophats, shoes, hoses, spare spacesuits, screaming idiots (I fell out). We’re moving 10% of the speed of light.

By 100 kilometers, the command module has spaghettified into a long stream of debris. The individual metal parts, although badly warped by being torn from their mountings, are mostly holding together, though they’re really starting to stretch. Anything softer is shattering/pulping/shredding. The black hole’s event horizon is the largest object in the sky: a fist-sized black disk of nothingness surrounded by a very pretty mandala of distorted stars and galaxies. It looks something like this:

scr00004

(Screenshot from the unbelievably awesome (and free) program Space Engine.)

We can’t see it, though: we’re all dead.

By 25 kilometers, we’re just a stream of fine dust hurtling towards the event horizon at close to the speed of light. For an observer at a great distance, our disintegration proceeds in slow motion, both from the massive speed at which we’re traveling, and from the time-dilating effects of extreme gravity.

As we scream through 14.8 kilometers, we’ve almost reached the event horizon. The individual atoms the command module used to be made of are accelerating apart, spraying the whole CM into a narrow stream of plasma. Outside observers, though, just see the incandescent dust slow to a halt, change color from electric-arc purple to brilliant blue-white to the color of the sun to the color of hot steel to red-hot to black. What happens when we hit the singularity not long after is anybody’s guess. By definition, at a singularity, the equations you’re working with just quit making sense.

Sagittarius A*

There’s a very massive and very dense thing at the center of the Milky Way. It has about 3.6 million times the mass of the Sun, and because there’s a star (poetically called S0-102) that orbits pretty close to it (relatively speaking, anyway: its closest-approach distance is still larger than the distance from the Sun to Pluto), we know it has to be quite small, and therefore quite dense. According to our current understanding of physics, any mass like that would inevitably collapse into a black hole no matter what. The short version: it’s probably a black hole. (Note 1: as of this writing in November 2016, radio astronomers have finally committed to using a gigantic virtual telescope to take a picture of the actual event horizon in 2017, which is awesome) (Note 2: Though the actual mechanism for their formation isn’t known, some astrophysicists have done simulations suggesting that they formed from super-massive stars in the early universe. These days, the largest stars are a few hundred solar masses, with the largest stars for which we have firm evidence weighing around 120 solar masses. That’s massive, but not super-massive. These super-massive primordial stars contained thousands of solar masses. The one in that article massed 55,500. Some may have exceeded a million.)

Because a black hole (or, at least, its event horizon) is as compact as you can make anything, black holes tend to be really small compared to normal objects of similar mass. A Moon-mass black hole would look like a black dust-grain. An Earth-mass one would look like a pea. A Sun-mass one (and remember, there’s a lot of stuff in the Sun) would be the size of a small town. The 5-solar-mass hole we considered a second ago would be the size of a city. Sagittarius A*, though, containing so much mass, is actually a proper astronomical-sized object: 15 times larger than the Sun. If some deity with a really sick sense of humor replaced the Sun with Sgr A*, it would hang in the sky, a little smaller than a fist at arm’s length. We would also all be dead. For many reasons: no sunlight, radiation from the accretion disk, and the fact that we’d be orbiting so fast that grains of dust would heat the upper atmosphere lethally hot.

At 1 AU (the average distance from the Earth to the Sun), Sgr A*’s event horizon is much larger in the sky than the Moon. We’re accelerating at 1800 gees, but we don’t feel it, because we’re in free-fall. The tidal acceleration is minuscule: less than a micron per second per second. Once again, we’re pretending the black hole has no accretion disk, because if it did, its radiation would probably have incinerated us by now.

By the time we pass through Mercury’s orbit (0.387 AU) (assuming we actually are in this nightmarish black-hole solar system), we’re going one-third the speed of light, accelerating at over 15,000 gees. The tides are still detectable only by specialized instruments.

By 0.1 AU, we’re moving three-quarters the speed of light. David Bowie is singing “Space Oddity”, because I’ve smuggled a durian fruit onboard and threatened to cut it open if he doesn’t. Lincoln is starting to get sick of this shit, but this just gives him that same grave expression he has in all his photographs. The tides are detectable by instruments, but probably not by our human senses. Hitting a stationary dust particle the size of a bacterium unleashes a burst of light as bright as a studio flash.

At 0.071 AU, we pass through the event horizon without even realizing it. Falling into a black hole intact is a little like having a gigantic black bag closed around you: the event horizon already covers more than half of the sky, thanks to the fact that the black hole bends light toward the horizon. The sky shrinks into an ever-diminishing circle in a black void. The circle grows brighter and bluer with every passing second.

By 0.05 AU, stray objects are drifting to the ends of the cabin again: the tides are finally picking up. David Bowie is holding me down and punching me repeatedly, because he’s sick of me resurrecting him and killing him over and over. Lincoln is letting him do it, because frankly, I’ve cracked his statesman’s patience with my bullshit. We’re only 30 seconds from the singularity.

Even at 0.01 AU, the tides aren’t stretching the capsule. The effects might be palpable, but they’re nothing compared to what we’ve already been through in the previous experiments. We’re riding down a shaft of blue-shifted light, concentrated into a point straight overhead: everything that’s fallen into the hole recently can’t help but curve inward, until it’s falling almost ruler-straight towards the singularity.

At one Sun radius from the singularity, the differential acceleration is approaching one gee. Things are starting to get uncomfortable. David Bowie has stopped punching me, because he’s fallen to the top of the capsule again. Lincoln, though, still has the strength to pick up a pen and stab me in the sternum. He’s cursing at me, and as I start to bleed to death, I observe that Lincoln is much more creative with his swears than I would have given him credit for.

At 150,000 km, we start to get woozy on account of the blood in our bodies pooling in all the wrong places. We narrowly avoid a collision with Matthew McConaughey in a spacesuit, who has gone from muttering about quantum data to describing the peculiar aging patterns of high-school girls.

At 50,000 km, moving very, very nearly the speed of light, the command module finally starts to disintegrate. Seconds later, we spaghettify, just as before, and strike the singularity. And, once again, we run afoul of the fact that physicists have very little idea what happens that deep in a gravity well. For reference, at 100 meters from the singularity (and ignoring relativistic effects and pretending we can use the Newtonian equation for tides down here), the differential acceleration is measured with twenty-digit numbers. If the capsule were infinitely rigid and didn’t spaghettify, by the time its bottom touched the singularity, the tides would be measured in 25-digit numbers. If, somehow, we’d survived our trip to the singularity, we’d be accelerating so fast that, thanks to the Unruh effectempty space would be so hot we’d instantly vaporize.

And here’s where physics breaks down. If I’m reading this paper right, the distance between any point and the singularity is infinity, because space-time is so strongly curved near it.

Imagine that space is two-dimensional. It contains two-dimensional stars with two-dimensional mass. That curves two-dimensional space into a three-dimensional manifold. The gravity well (technically, the metric) around a very dense (but non-black-hole) looks roughly like this:

GravityPotential.jpg

(From Wikipedia.)

If you measure the circumference of the object, you can calculate its diameter: divide by two times pi. But when you measure its actual diameter, you’ll find it’s larger than that, because of the way strong gravitation stretches spacetime. In the case of a black hole, spacetime looks more like this:

Fig1.png

(From the paper cited above.)

The cylindrical part of the trumpet is (if I’m understanding this correctly) infinitely long. The “straight-line” distance through the black hole, on a line that just barely misses the singularity, is much larger than you’d expect. But the distance through the black hole, measured on a line that hits the singularity is infinite. All lines that hit the singularity just stop there.

But, to be honest, I really don’t know what it’d be like down there. Nobody does. The first person to figure out what gravity and particle physics do under conditions like that will probably be getting a shiny medal from some Swedes.

Standard
Addendum, Space, thought experiment

Addendum: The Moon Cable

Reader Dan of 360 Exposure, pointed out something that I completely neglected to mention, regarding cable strength. Not only would the Moon Cable be unable to connect the Earth and Moon without breaking (either by being stretched, or by winding around the Earth and then being stretched), but it couldn’t even support its own weight.

There’s a really cool measurement used in engineering circles: specific strength. Specific strength compares the strength of a material to its weight. It’s often measured in (kilonewtons x meters) / kilograms. But there’s another measurement that I like better: breaking length. Breaking length tells you the same thing, but in a more intuitive way. Breaking length is the maximum length of a cable made of the material in question that could dangle free under 1 gee (9.80665 m/s^2) without the cable’s own weight breaking it.

Concrete’s breaking length is only 440 meters. Oak does better, at 13 kilometers (a really bizarre inverted tree. That’d make a good science-fiction story). Spider silk, which has one of the highest tensile strengths of any biological material, has a breaking length of 109 km (meaning a space-spider could drop a web from very low orbit and snag something on the ground. There’s a thought.) Kevlar, whose tensile strength and low density make it ideal for bullet-proof vests, has a breaking length of 256 kilometers. If you could ignore atmospheric effects (you can’t) and the mass of the rope (you can’t), you could tie a Kevlar rope to a satellite and have it drag along the ground. Zylon is even better. It’s a high-tensile synthetic polymer with a higher tensile strength than Kevlar, and a larger breaking length: 384 kilometers. You could attach a harpoon to a Zylon rope and use it to catch the International Space Station (no you couldn’t).

And, funnily enough, specific strength is one of those things that has a well-established upper limit. According to current physics, nothing (made of matter, magnetic fields, or anything else) can have a breaking length longer than 9.2 trillion kilometers. This is demonstrated in this paper, which I could get the gist of but which I can’t vouch for, because I understand the Einstein Field Equations about as well as I understand cricket, or dating, or the politics of Mongolian soccer. But the long and the short of it is that it’s not possible, according to current physics, to make anything stronger than this without violating one of those important conservation laws, or the speed of light, or something similar.

Not that we were ever going to get there anyway. The strongest material that has actually been produced (as of this writing, July 2016) is the colossal carbon tube. Think of a tube made of corrugated cardboard with holes in it, except that the cardboard and the corrugation is made of graphene. Colossal carbon tubes have a breaking length of something like 6,000 km (remember, this is under constant gravity, not real gravity). And that’s theoretical. So we’re not building a giant ISS-catching harpoon any time soon.

You might have noticed that I skipped over the one material that I was actually talking about in the Moon Cable post: steel. There’s a reason for that. I want to leave the big punch in the gut for the very end. For dramatic purposes. Ordinary 304 stainless steel has a pitiful breaking length of 6.4 km. Inconel (which is both surprisingly tough and amazingly heat-resistant, and is often used in things like rocket combustion chambers) only does a little better, at 15.4 km. There’s no handwaving it: you can’t attach the Moon to the Earth with a metal cable.

Standard
biology, Dragons, physics, thought experiment

Dragon Metabolism

As you might have noticed, I have a minor obsession with dragons. I blame Sean Connery. And, because I can never leave anything alone, I got to wondering about the practical details of a dragon’s life. I’ve already talked about breathing fire. I’m not so sure about flight, but hell, airplanes fly, so it might be possible.

But I’ll worry about dragon flight later. Right now, I’m worried about metabolism. Just how many Calories would a dragon need to stay alive? And is there any reasonable way it could get that many?

Well, there’s more than one type of dragon. There are dragons small enough to perch on your shoulder (way cooler than a parrot), and there are dragons the size of horses, and there are dragons the size of cathedrals (Smaug again), and there are, apparently, dragons in Tolkein’s universe that stand taller than the tallest mountains. Here’s a really well-done size reference, from the blog of writer N.R. Eccles-Smith:

dragon-size-full-chart

The only downside is that there’s no numerical scale. There is, however, a human. And, if you know my thought experiments, you know that, no matter what age, sex, or race, human beings are always exactly 2 meters tall. Therefore, the dragons I’ll be considering range in size from 0.001 meters (a hypothetical milli-dragon), 1 meter (Spyro, number 3, purple in the image) to 40 meters (Smaug, number 11), and then beyond that to 1,000 meters, and then beyond to the absolutely ludicrous.

Continue reading

Standard
Uncategorized

A Toyota on Mars (Cars, Part 1)

I’ve said this before: I drive a 2007 Toyota Yaris. It’s a tiny economy car that looks like this:

2007_toyota_yaris_9100

(Image from RageGarage.net)

The 2007 Yaris has a standard Toyota 4-cylinder engine that can produce about 100 horsepower (74.570 kW) and 100 foot-pounds of torque (135.6 newton-metres). A little leprechaun told me that my particular Yaris can reach 110 mph (177 km/h) for short periods, although the leprechaun was shitting his pants the entire time.

A long time ago, [I computed how fast my Yaris could theoretically go]. But that was before I discovered Motor Trend’s awesome Roadkill YouTube series. Binge-watching that show led to a brief obsession with cars, engines, and drivetrains. There’s something very compelling about watching two men with the skills of veteran mechanics but maturity somewhere around the six-year-old level (they’re half a notch above me). And because of that brief obsession, I learned enough to re-do some of the calculations from my previous post, and say with more authority just how fast my Yaris can go.

Let’s start out with the boring case of an ordinary Yaris with an ordinary Yaris engine driving on an ordinary road in an ordinary Earth atmosphere. As I said, the Yaris can produce 100 HP and 100 ft-lbs of torque. But that’s not what reaches the wheels. What reaches the wheels depends on the drivetrain.

I spent an unholy amount of time trying to figure out just what was in a Yaris drivetrain. I saw some diagrams that made me whimper. But here’s the basics: the Yaris, like most front-wheel drive automatic-transmission cars, transmits power from the engine to the transaxle, which is a weird and complicated hybrid of transmission, differential, and axle. Being a four-speed, my transmission has the following four gear ratios: 1st = 2.847, 2nd = 1.552, 3rd = 1.000, 4th = 0.700. (If you don’t know: a gear ratio is [radius of the gear receiving the power] / [radius of the gear sending the power]. Gear ratio determines how fast the driven gear (that is, gear 2, the one being pushed around) turns relative to the drive gear. It also determines how much torque the driven gear can exert, for a given torque exerted by the drive gear. It sounds more complicated than it is. For simplicity’s sake: If a gear train has a gear ratio greater than 1, its output speed will be lower than its input speed, and its output torque will be higher than its input torque. For a gear ratio of 1, they remain unchanged. For a gear ratio less than one, its output speed will be higher than its input speed, but its output torque will be lower than its input torque.)

But as it turns out, there’s a scarily large number of gears in a modern drivetrain. And there’s other weird shit in there, too. On its way to the wheels, the engine’s power also has to pass through a torque converter. The torque converter transmits power from the engine to the transmission and also allows the transmission to change gears without physically disconnecting from the engine (which is how shifting works in a manual transmission). A torque converter is a bizarre-looking piece of machinery. It’s sort of an oil turbine with a clutch attached, and its operating principles confuse and frighten me. Here’s what it looks like:

torque_convertor_ford_cutaway1

(Image from dieselperformance.com)

Because of principles I don’t understand (It has something to do with the design of that impeller in the middle), a torque converter also has what amounts to a gear ratio. In my engine, the ratio is 1.950.

But there’s one last complication: the differential. A differential (for people who don’t know, like my two-months-ago self) takes power from one input shaft and sends it to two output shafts. It’s a beautifully elegant device, and probably one of the coolest mechanical devices ever invented. You see, most cars send power to their wheels via a single driveshaft. Trouble is, there are two wheels. You could just set up a few simple gears to make the driveshaft turn the wheels directly, but there’s a problem with that: cars need to turn once in a while. If they don’t, they rapidly stop being cars and start being scrap metal. But when a car turns, the inside wheel is closer to the center of the turning circle than the outside one. Because of how circular motion works, that means the outside wheel has to spin faster than the inside one to move around the circle. Without a differential, they have to spin at the same speed, meaning turning is going to be hard and you’re going to wear out your tires and your gears in a hurry. A differential allows the inside wheel to slow down and the outside wheel to spin up, all while transmitting the same amount of power. It’s really cool. And it looks cool, too:

cutaway20axle20differential20diff-1

(Image from topgear.uk.net)

(Am I the only one who finds metal gears really satisfying to look at?)

Anyway, differentials usually have a gear ratio different than 1.000. In the case of my Yaris, the ratio is 4.237.

So let’s say I’m in first gear. The engine produces 100 ft-lbs of torque. Passing through the torque converter converts that (so that’s why they call it that) into 195 ft-lbs, simultaneously reducing the rotation speed by a factor of 1.950. For reference, 195 ft-lbs of torque is what a bolt would feel if Clancy Brown was sitting on the end of a horizontal wrench 1 foot (30 cm) long. There’s an image for you. Passing through the transmissions first gear multiplies that torque by 2.847, for 555 ft-lbs of torque. (Equivalent to Clancy Brown, Keith David, and a small child all standing on the end of a foot-long wrench.) The differential multiplies the torque by 4.237 (and further reduces the rotation speed), for a final torque at the wheel-hubs of 2,352 ft-lbs (equivalent to hanging two of my car from the end of that one-foot wrench, or sitting Clancy Brown and Peter Dinklage at the end of a 10-foot wrench. This is a weird party…)

By this point, you’d be well within your rights to say “Why the hell are you babbling about gear ratios?” Believe it or not, there’s a reason. I need to know how much torque reaches the wheels to know how much drag force my car can resist when it’s in its highest gear (4th). That tells you, to much higher certainty, how fast my car can go.

In 4th gear, my car produces (100 * 1.950 * 0.700 * 4.237), or 578 ft-lbs of torque. I know from previous research that my car has a drag coefficient of about 0.29 and a cross-sectional area of 1.96 square meters. My wheels have a radius of 14 inches (36 cm), so, from the torque equation (which is beautifully simple), the force they exert on the road in 4th gear is: 495 pounds, or 2,204 Newtons. Now, unfortunately, I have to do some algebra with the drag-force equation:

2,204 Newtons = (1/2) * [density of air] * [speed]^2 * [drag coefficient] * [cross-sectional area]

Which gives my car’s maximum speed (at sea level on Earth) as 174 mph (281 km/h). As I made sure to point out in the previous post, my tires are only rated for 115 mph, so it would be unwise to test this.

I live in Charlotte, North Carolina, United States. Charlotte’s pretty close to sea level. What if I lived in Denver, Colorado, the famous mile-high city? The lower density of air at that altitude would allow me to reach 197 mph (317 km/h). Of course, the thinner air would also mean my engine would produce less power and less torque, but I’m ignoring those extra complications for the moment.

And what about on Mars? The atmosphere there is fifty times less dense than Earth’s (although it varies a lot). On Mars, I could break Mach 1 (well, I could break the speed equivalent to Mach 1 at sea level on Earth; sorry, people will yell at me if I don’t specify that). I could theoretically reach 1,393 mph (2,242 km/h). That’s almost Mach 2. I made sure to specify theoretically, because at that speed, I’m pretty sure my tires would fling themselves apart, the oil in my transmission and differential would flash-boil, and the gears would chew themselves into a very fine metal paste. And I would die.

Now, we’ve already established that a submarine car, while possible, isn’t terribly useful for most applications. But it’s Sublime Curiosity tradition now, so how fast could I drive on the seafloor? Well, if we provide compressed air for my engine, oxygen tanks for me, dive weights to keep the car from floating, reinforcement to keep the car from imploding, and paddle-wheel tires to let the car bite into the silty bottom, I could reach a whole 6.22 mph (10.01 km/h). On land, I can run faster than that, even as out-of-shape as I am. So I guess the submarine car is still dead.

But wait! What if I wasn’t cursed with this low-power (and pleasantly fuel-efficient) economy engine? How fast could I go then? For that, tune in to Part 2. That’s where the fun begins, and where I start slapping crazy shit like V12 Bugatti engines into my hatchback.

Standard
Uncategorized

Death by Centrifuge

WARNING! Although it won’t contain any gory pictures, this post is going to contain some pretty gory details of what might happen to the human body under high acceleration. Children and people who don’t like reading about such things should probably skip this one. You have been warned.

In my last post, I talked a bit about gee forces. Gee forces are a handy way to measure acceleration. Right now, you and I and (almost) every other human are experiencing somewhere around 1 gee of head-to-foot acceleration due to the Earth’s gravity. Anyone who happens to be at the top of Mt. Everest is experiencing 0.999 gees. The overgrown amoebas at the bottom of the Challenger deep are experiencing 1.005 gees.

But human beings are exposed to greater gee forces than this all the time. For instance, the astronauts aboard Apollo 11 experienced up to 4 gees during launch. Here’s an awesome graph from NASA:

Fighter pilots have to put up with even higher gee forces when they make tight turns, thanks to the centrifugal acceleration required to turn in a circle at high speeds. From what I can gather, many pilots have to demonstrate they can handle 9 gees for 10 or 15 seconds without blacking out in order to qualify to fly planes like the F-16. Here’s an example of things not going right at 9 gees:

Yes, it’s the same video from the last post. I spent fifteen or twenty minutes searching YouTube for a better one, but I couldn’t find it. I did, however, discover this badass pilot in a gee-suit who handled 12 gees:

The reason we humans don’t tolerate gee forces very well is pretty simple: we have blood. Blood is a liquid. Like any liquid, its weight produces hydrostatic pressure. I’ll use myself as an example (for the record, I’m pretty sure I would die at 9 gees, but anybody who wants to let me in a centrifuge, I’d love to prove myself wrong). I’m 6 feet, 3 inches tall, or 191 centimeters, or 1.91 meters. Blood is almost the same density as water, so we can just run Pascal’s hydrostatic-pressure equation: (1 g/cc [density of blood]) * (9.80665 m/s^2 [acceleration due to gravity]) * (1.91 m [my height]). That comes out to a pressure of 187.3 millibars, or, to use the units we use for blood pressure in the United States, 140.5 millimeters of mercury.

It just so happens that I have one of those cheap drugstore blood-pressure cuffs handy. You wait right here. I’m gonna apply it to the fleshy part of my ankle and check my math.

It’s a good thing my heart isn’t in my ankle, because the blood pressure down there is 217/173. That’s the kind of blood pressure where, if you’ve got it throughout your body, the doctors get pale and start pumping you full of exciting chemicals. For the record, my resting blood pressure hovers around 120/70, rising to 140/80 if I drink too much coffee.

The blood pressure at the level of my heart, meanwhile, should be (according to Pascal’s formula) (1 g/cc) * (9.80665 m/s^2) * (0.42 m [the distance from the top of my head to my heart]). That’s 41.2 millibars or 30.9 mmHg. I’m not going to put the blood-pressure cuff on my head. To butcher that Meat Loaf song “I would do any-thing for science, but I won’t dooooo that.” I can get a good idea of the pressure at head level, though, by putting the cuff around my bicep and raising it to the same height as my head. Back in a second.

Okay. So, apparently, there are things I won’t do for science, but there aren’t many of them. Among the things I will do for science is attempting to tape my hand to the wall so my muscle contractions don’t interfere with the blood-pressure reading. That didn’t work out. But the approximate reading, because I was starting to fear for my sanity and wanted to stop, is 99/56. 56 mmHg, which is the between-heartbeats pressure, is higher than 41.2, but it’s in the same ballpark. The differences are probably due to stuff like measurement inaccuracies and the fact that blood vessels contract to keep the blood pressure from varying too much throughout the body.

Man. That was a hell of a digression. But this is what it was leading to: when I’m standing up (and I’ve had coffee), my heart and blood vessels can exert a total pressure of about 131 mmHg. Ordinarily, it’s pumping against a head-to-heart pressure gradient of 41.2 mmHg. But what if I was standing up and exposed to five gees?

In that case, my heart would be pumping against a gradient of 154.5 mmHg. That means it’s going to be really easy for the blood to flow from my brain to my heart, but very hard for the blood to flow from my heart to my brain. And it’s for that reason that the handsome young dude in the first video passed out: his heart (most certainly in better shape than mine…) couldn’t produce enough pressure to keep the blood in his head, in spite of that weird breathing and those leg-and-abdomen-straining maneuvers he was doing to keep the blood up there. People exposed to high head-to-foot gees see their visual field shrink, and eventually lose consciousness altogether. Pilots call that G-LOC, which I really hope is the name of a rapper. (It stands for gee-induced loss of consciousness, in case you were wondering).

You’ll notice that, in almost all spacecraft, whether in movies or in real life, the astronauts are lying on their backs, relative to the ground, when they get in the capsule. That’s because human beings tolerate front-to-back gees better than head-to-foot gees, and in a rocket launch or a capsule reentry, the gees will (hopefully) always be front-to-back. There is at least one documented case (the case of madman test pilot John Stapp) of a human being surviving 46.2 front-to-back gees for over a second. There are a few documented cases of race drivers surviving crashes with peak accelerations of 100 gees.

But you should know by now that I don’t play around. I don’t care what happens if you’re exposed to 46.2 gees for a second. I want to know what happens if you’re exposed to it for twenty-four hours. Because, at heart, I’ve always been a mad scientist.

There’s a reason we don’t know much about the effects of extremely high accelerations. Actually, there are two reasons. For one, deliberately exposing a volunteer to gee forces that might pulp their organs sounds an awful lot like an experiment the Nazis would have done, and no matter your course in life, it’s always good if you don’t do Nazi-type things. For another, building a large centrifuge that could get up to, say, a million gees, would be hard as all hell.

But since I’m playing mad scientist, let’s pretend I’ve got myself a giant death fortress, and inside that death fortress is a centrifuge with a place for a human occupant. The arm of the centrifuge is 100 meters long (as long as a football field, which applies no matter which sport “football” is to you). To produce 1,000,000 gees, I’d have to make that arm spin 50 times a second. It would produce an audible hum. It would be spinning as fast as a CD in a disk drive. Just to support the centrifugal force from a 350-kilogram cockpit, I’d need almost two thousand one-inch-diameter Kevlar ropes. Doable, but ridiculous. That’s the way I like it.

But what would actually happen to our poor volunteer? This is where that gore warning from the beginning comes in. (If it makes you feel better, you can pretend the volunteer is a death-row inmate whose worst fears are, in order, injections, electrocution, and toxic gas, therefore making the centrifuge less cruel and unusual.)

That’s hard to say. Unsurprisingly, there haven’t been many human or animal experiments over 10 gees. Probably because the kinds of people who like to see humans and lab animals crushed to a pulp are too busy murdering prostitutes to become scientists. But I’m determined to at least go through the thought experiment. And you know what, I’m starting to feel kinda weird talking about crushing another person to a pulp, so for this experiment, we’ll use my body measurements and pretend it’s me in the centrifuge. A sort of punishment, to keep me from getting too excited about doing horrible theoretical things to people.

The circumference of my head is 60 cm. If my head was circular, I could just divide that by pi to get my head’s diameter. For most people, that assumption doesn’t work. Luckily (for you, at least), my head is essentially a lumpy pink bowling ball with hair, so its diameter is about 60 cm / pi, or 19.1 cm.

Lying down under 1 gee, hydrostatic pressure means the blood vessels at the back of my head will be experiencing 14.050 mmHg more pressure than the ones at the front. From the fact that I don’t have brain hemorrhages every time I lie down, I know that my brain can handle at least that much.

But what about at 5 gees? I suspect I could probably handle that, although perhaps not indefinitely. The difference between the front of my head and the back of my head would be 70.250 mmHg. I might start to lose some of my vision as the blood struggled to reach my retinas, and I might start to see some very pretty colors as the back of my brain accumulated the excess, but I’d probably survive.

At 10 gees, I’m not so sure how long I could take it. That means a pressure differential of 140.500 mmHg, so at 10 gees, it would take most of my heart’s strength just to get blood to the front of my head and front of my brain. With all that additional pressure at the back of my brain, and without any muscles to resist it, I’m probably going to have to start worrying about brain hemorrhages at 10 gees.

As a matter of fact, the brain is probably going to be one of the first organs to go. Nature is pretty cool: she gave us brains, but brains are heavy. So she gave us cerebrospinal fluid, which is almost the same density as the brain, which, thanks to buyoancy, reduces the brain’s effective mass from 1,200 grams to about 22 grams. This is good because, as I mentioned, the brain doesn’t have muscles that it can squeeze to re-distribute its blood. So, if the brain’s effective weight were too high, it would do horrible things like sink to the bottom of the skull and start squeezing through the opening into the neck (this happens in people who have cerebrospinal fluid leaks; they experience horrifying headaches, dizziness, blurred vision, a metallic taste in the mouth, and problems with hearing and balance, because their leaking CSF is letting the brain sink downwards and compress the cranial nerves).

At 5 gees, my brain is going to feel like it weighs 108 grams. Not a lot, but perhaps enough to notice.

But what if I pulled a John Stapp, except without his common sense? That is: What if I exposed myself to 46.2 gees continuously.

Well, I would die. In many very unpleasant ways. For one thing, my brain would sink to the back of my head with an effective weight of 1002 grams. The buoyancy from my CSF wouldn’t matter anymore, and so my brain would start to squish against the back of my skull, giving me the mother of all concussions.

I probably wouldn’t notice, though. For one thing, the hydrostatic blood pressure at the back of my head would be 641.100 mmHg, which is three times the blood pressure that qualifies as a do-not-pass-Go-go-directly-to-the-ICU medical emergency. So all the blood vessels in the back of my brain would pop, while the ones at the front would collapse. Basically, only my brainstem would be getting oxygen, and even it would be feeling the strain from my suddenly-heavy cerebrum.

That’s okay, though. I’d be dead before I had time to worry about that. The average chest wall in a male human is somewhere around 4.5 cm thick. The average density of ribs, which make up most of the chest wall, is around 3.75 g/cc. I measured my chest at about 38 cm by 38 cm. So, lying down, at rest, my diaphragm and respiratory muscles have to work against a slab of chest with an equivalent mass of 24.4 kilograms. Accelerating at 46.2 gees means my chest would feel like it massed 1,100 kilograms more. That is, at 46.2 gees, my chest alone would make it feel like I had a metric ton sitting on my ribs. At 100 gees, I’d be feeling 2.4 metric tons.

But at 100 gees, that’d be the least of my problems. At accelerations that high, pretty much everything around or attached to or touching my body would become deadly. A U.S. nickel (weighing 5 grams and worth 0.05 dollars) would behave like it weighed half a kilogram. But I wouldn’t notice that. I’d be too busy being dead. My back, my thighs, and my buttocks would be a horrible bruise-colored purple from all the blood that rushed to the back of me and burst my blood vessels. My chest and face would be horrible and pale, and stretched almost beyond recognition. My skin might tear. My ribcage might collapse.

Let’s crank it up. Let’s crank it up by a whole order of magnitude, and expose me to 1,000 continuous gees. This is where things get very, very messy and very, very horrible. If you’re not absolutely sure you can handle gore that would make Eli Roth and Paul Verhoven pee in their pants, please stop reading now.

At 1,000 gees, my eyeballs would either burst, or pop through their sockets and into my brain cavity. That cavity would likely be distressingly empty, since the pressure would probably have ruptured my meninges and made all the spinal fluid leak out. The brain itself would be roadkill in the back of my skull. Even if my ribs didn’t snap, my lungs would collapse under their own weight. The liver, which is a pretty fatty organ, would likely rise towards the top of my body while heavier stuff like muscle sank to the bottom. Basically, my guts would be moving around all over the place. And, at 1,000 gees, my head would feel like it weighed 5,000 kilograms. That’s five times as much as my car. My head would squish like a skittle under a boot.

At 10,000 gees, I would flatten. The bones in the front of my ribcage would weigh 50 metric tons. A nickel would weigh as much as a child or a small adult. My bones would be too heavy for my muscles to support them, and would start…migrating towards the bottom of my body. At this point, my tissues would begin behaving more and more like fluids. This would be more than enough to make my blood cells sink to the bottom and the watery plasma rise to the top. 10,000 gees is the kind of acceleration usually only experienced by bullets and in laboratory centrifuges.

By 100,000 gees, I’d be a horrible fluid, layered like a parfait from hell: a slurry of bone at the bottom topped with a gelatinous layer of muscle proteins and mitochondria, then a layer of hemoglobin, then a layer of collagen, then a layer of water, then a layer of purified fat.

And finally, at 1,000,000 gees, even weirder stuff would start to happen. For one thing, a nickel would weigh as much as a car. But let’s focus on me, or rather, what’s left of me. At 1,000,000 gees, individual molecules start to separate by density. The bottom of the me-puddle would be much richer in things like hemoglobin, calcium carbonate, iodine-bearing thyroid hormones, and large, stable proteins. Meanwhile, the top would consist of human tallow. Below that would be an oily layer of what was once stored oils in fat cells. Below that would come a slurry of the lighter cell organelles like the endoplasmic reticula and the mitochondria. The heavier organelles like the nucleus would be closer to the bottom. That’s right: at 1,000,000 gees, the difference in density between a cell’s nucleus and cytoplasm is enough to make the nucleus sink to the bottom.

I think we’ve gotten horrible enough. So let’s stop the centrifuge, hose what’s left of me out of it, and go ahead and call up a psychiatrist.

But before we do that, I want to make note of something amazing. In 2010, some very creative Japanese scientists decided to try a bizarre experiment. They placed different bacteria in test tubes full of nutrient broth, and put those test tubes in an ultracentrifuge. The ultracentrifuge exposed the bacteria to accelerations of around 400,000 gees. Normally, that’s the kind of acceleration you’d use to separate the proteins from the membranes. It’d kill just about anything. But it didn’t kill the bacteria. As a matter of fact, many of the bacteria kept right on growing. They kept on growing at an acceleration that would kill even a well-protected human instantly. Sure, their cells got a little weird-shaped, but so would yours, if you were exposed to 400,000 gees.

The universe is awesome. And scary as hell.

Actually, I think I’ll let Sam Neill (as Dr. Weir in Event Horizon) sum this one up: “Hell is only a word. The reality is much, much worse.”

Standard